Preparation of high-strength biochar composite briquette for blast furnace ironmaking

Author:

Yu Zi,Liu Zhu,Tang HuiqingORCID,Xue Qingguo

Abstract

In this research, using iron-oxide fines (average size: 2.5 μm) and biochar fines (average size: 50.0 μm), the biochar composite briquette (BCB) for blast furnace (BF) application was prepared by cold briquetting followed by heat treatment. The preparing conditions were optimized regarding its cold crushing strength. Anti-pulverization capability, reaction development, and structure evolution of the optimally-designed BCB under simulated BF conditions were then examined. Results of optimizing BCB preparation conditions showed that a heating temperature of 1073 K was optimal for preparing the BCB. The optimally-designed BCB contained 11.10 wt.% carbon, 72.21 wt.% Fe3O4, 11.25 wt.% FeO, and 0.77 wt.% Fe, 6.44 wt.% gangue, and had a cold crushing strength of 1800 N/briquette. Results of BCB behavior under simulated BF conditions showed that the cold crushing strength after partial reaction of the BCB ranged from 1500 N/briquette to 5500 N/briquette and its maximum volume shrinkage degree was 0.45. The high anti-pulverization capability of the BCB was supported by the slag matrix or the iron network. Under the simulated BF conditions, the BCB underwent five stages of reduction by atmosphere, partial self-reduction and reduction by atmosphere, full self-reduction, partial self-reduction and gasification by atmosphere, and gasification by atmosphere. It is inferred from the experimental findings that, by charging the BCB in BF, an increase of top gas utilization efficiency could be realized, and a favorable influence on lowering the temperature level of the thermal reserve zone could be obtained.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3