Abstract
Ferrous-calcium-silicate (commonly known as FCS) slags are used in the valuable metal recycling from urban ores through both primary and secondary copper smelting processes. In the present study, the structure of selected FCS-MgO (FCSM) and FCS-MgO-Cu2O-PdO (FCSM-Cu2O-PdO) slags, relevant to the processes, were investigated using Fourier-transform infrared (FTIR) spectrometry. Deconvolution of the FTIR spectra was carried out to calculate the relative abundance of different silicate structural units (Qn), the overall degree of polymerization (DOP) of the slags and the oxygen speciation in the FCS slags. It was observed that, for the slag investigated, the relative intensity of both the high-frequency band ≈ 1100 cm−1 (Q3) and low-frequency band ≈ 850 cm−1 (Q0) were affected by Fe/SiO2 ratio, basicity, temperature (T) and oxygen partial pressure (pO2). The DOP and the average number of bridging oxygen (BO) were found to decrease with increasing both Fe/SiO2 ratio and basicity. Improved semi-empirical equations were developed to relate the DOP of the slags with chemistry, process parameters and partitioning ratio (i.e., the ratio of the amount of element in the slag phase to metal phase, also known as distribution ratio) of Pd and Ge. Possible reactions, expressed as reactions between metal cations and silicate species, as a way to evaluate thermodynamic properties, are presented herein.
Subject
General Materials Science,Metals and Alloys
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献