Evaluation of copper slag and stainless steel slag as replacements for blast furnace slag in binary and ternary alkali-activated cements

Author:

Stefanini LauraORCID,Ghorbani Saeid,De Schutter Geert,Matthys Stijn,Walkley Brant,Provis John L.ORCID

Abstract

AbstractCommonly used alkali activation precursors such as blast furnace slag and fly ash will soon become less available due to resource competition, and may cease to be produced in certain regions. This limitation in future supply is a main driving force for the investigation of alternative precursor sources, such as non-blast furnace slags and non-ferrous slags, to produce alkali-activated binders. The current study investigates the incorporation of copper slag (CS) and stainless steel slag resulting from electric arc furnace operations (EAFSS) as partial replacements for ground granulated blast furnace slag (GGBFS) in producing alkali-activated materials (AAMs), at paste level. Five binary alkali-activated mixtures with different replacement levels of GGBFS with CS, and three ternary mixtures with both CS and EAFSS as partial and total replacements for GGBFS, are activated by a sodium silicate solution. Replacing GGBFS with CS and EAFSS retards the reaction kinetics, resulting in improved fresh-state properties of the investigated AAMs, better retention of workability and longer setting times. The reaction of alkali-activated 100% CS shows minimal initial exothermic activity until 3.5 h, when a single intense peak appears, representing delayed dissolution and subsequent polycondensation. X-ray diffraction (XRD) data indicate that the main crystalline phases of CS and EAFSS are stable in these alkaline systems; it is the glassy components that react. The use of CS and EAFSS in blended AAMs causes a minor increase in porosity of ~ 1–3% with respect to GGBFS only, and a small reduction in compressive and flexural strengths, although these reach 80 MPa and 8 MPa, respectively, after 28 days, even at a replacement level over 65 wt. %. Conversely, the 100% CS mixture exhibits a one-day compressive strength of 23 MPa, with a negligible increase thereafter. This result agrees with both FTIR and SEM analysis which highlight only minor changes in binder development after two days. It is believed that the unusual behaviour of CS in the investigated mixtures is related to the low availability of calcium in this precursor material.

Funder

Interreg North-West Europe

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3