Abstract
Additive manufacturing is a technology that enables the repair and coating of high-added-value parts. In applications such as hot stamping, the thermal behavior of the material is essential to ensure the proper operation of the manufactured part. Therefore, the effective thermal diffusivity of the material needs to be evaluated. In the present work, the thermal diffusivity of laser-deposited AISI H13 is measured experimentally using flash and lock-in thermography. Because of the fast cooling rate that characterizes the additive process and the associated grain refinement, the effective thermal diffusivity of the laser-deposited AISI H13 is approximately 15% lower than the reference value of the cast AISI H13. Despite the directional nature of the process, the laser-deposited material’s thermal diffusivity behavior is found to be isotropic. The paper also presents a case study that illustrates the impact of considering the effective thermal conductivity of the deposited material on the hot stamping process.
Funder
H2020 European Institute of Innovation and Technology
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献