Using Statistical Modeling to Predict the Electrical Energy Consumption of an Electric Arc Furnace Producing Stainless Steel

Author:

Carlsson Leo S.,Samuelsson Peter B.ORCID,Jönsson Pär G.

Abstract

The non-linearity of the Electric Arc Furnace (EAF) process and the correlative behavior between the process variables impose challenges that have to be considered if one aims to create a statistical model that is relevant and useful in practice. In this regard, both the statistical modeling framework and the statistical tools used in the modeling pipeline must be selected with the aim of handling these challenges. To achieve this, a non-linear statistical modeling framework known as Artificial Neural Networks (ANN) has been used to predict the Electrical Energy (EE) consumption of an EAF producing stainless steel. The statistical tools Feature Importance (FI), Distance Correlation (dCor) and Kolmogorov–Smirnov (KS) tests are applied to investigate the most influencing input variables as well as reasons behind model performance differences when predicting the EE consumption on future heats. The performance, measured as kWh per heat, of the best model was comparable to the performance of the best model reported in the literature while requiring substantially fewer input variables.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3