Phosphorus Inactivation in Lake Sediments Using Calcite Materials and Controlled Resuspension—Mechanism and Efficiency

Author:

Bańkowska-Sobczak Agnieszka,Blazejczyk Aurelia,Eiche ElisabethORCID,Fischer Uwe,Popek Zbigniew

Abstract

The efficiency and mechanism of orthophosphate—soluble reactive phosphorus (SRP)—inactivation in eutrophic lakes using controlled resuspension and calcite application into the sediment were investigated in this study. Two calcite materials, industrially produced precipitated calcium carbonate (PCC) and natural ground limestone (GCC), were tested in short-term batch experiments and long-term sediment incubations under oxic and anoxic conditions. Maximum SRP adsorption capacity calculated using Langmuir model for PCC (3.11 mg PO43− g−1) was 6 times higher than of GCC (0.43 mg PO43− g−1), reflecting substantial difference in the surface area of calcite materials (12.36 and 1.72 m2 g−1, respectively). PCC applied into the sediment during controlled resuspension reduced SRP release by 95% (oxic) and 78% (anoxic incubation) at medium dose (0.75 kg m−2) and suppressed it completely at high dose (1.5 kg m−2) for at least 3 months, irrespectively of incubation conditions. The maximum achieved reduction of SRP release using GCC was also meaningful: 78% under oxic and 56% under anoxic conditions, but this required very high doses of this material (6 kg m−2). Mechanisms of SRP inactivation by calcites were: (1) adsorption of SRP during application into the resuspended sediment and (2) precipitation of calcium-phosphate compounds (Ca-PO4) during subsequent incubation, which was reflected in a substantial increase in the HCl-P fraction (phosphorus extractable in 0.5 M HCl) in sediments enriched with calcite, irrespectively of oxygen presence. However, anoxia strongly promoted the formation of this fraction: the rise of HCl-P was 2–6 times higher in anoxic than in oxic conditions, depending on the dose and form of calcite applied. The results showed that SRP inactivation using the controlled resuspension method is only successful if highly efficient reactive materials are used, due to large amount of SRP being released from sediment during resuspension. Thus, calcite materials exhibiting high adsorption capacity should be used in this lakes’ restoration technology to ensure fast and sufficient SRP inactivation. The rise in the HCl-P fraction in sediment suggests SRP inactivation through precipitation of relatively stable Ca-PO4 minerals, which makes calcite a suitable agent for sustainable, long term SRP inactivation. As anoxic conditions promoted formation of these compounds, calcite seems to be a promising SRP inactivation agent in highly reductive sediments.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3