Phosphorus inactivation mitigates the effect of warm winters in a temperate shallow lake (Mielenko Lake, Poland)

Author:

Augustyniak-Tunowska RenataORCID,Karczmarczyk Rafał,Grochowska Jolanta,Łopata Michał,Napiórkowska-Krzebietke Agnieszka,Lürling Miquel

Abstract

AbstractDirect and indirect anthropopressure on water ecosystems is the serious problem throughout the world.. In the Northern Hemisphere, an increase in average air temperatures is observed, which implies the occurrence of a shorter period of snow and ice cover during the winter season. The winter 2019/2020 was unusual, because that was the first time in the record, that a complete lack of permanent ice cover was observed on numerous lakes in Poland. Such unusual conditions could influence lake functioning. Hence we analyzed the chemistry of the water–sediment interface (near-bottom and interstitial water and sediment) in the shallow, eutrophic Mielenko Lake (area 7.9 ha, max depth 1.9 m) in 2013 and 2019–2022 period to assess the influence of prolonged water circulation on the bottom zone. Mielenko Lake was subjected to a phosphorus inactivation procedure using Al and Fe salts (PAX 18, PIX 111) in 2020 and 2021. Our research revealed that unusually prolonged winter circulation caused a significant decrease in organic matter content in bottom sediment in 2020, as well as a decrease in NaOH-nrP fraction and TP amounts. That effect was short-term and it did not significantly influence the NaOH-rP fraction amounts. The released P was probably built in macrophytes biomass during vegetation season, because P inactivation has been limiting phytoplankton proliferation, and it favored shifting to a clearwater state with macrophytes domination. This was confirmed by decreasing in phytoplankton biomass, and a massive expansion of the macrophytes range noted in the second year of restoration. Our study shows, that P inactivation could mitigate the negative effects of warm winters in shallow lakes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3