Geochronology of Uraninite Revisited

Author:

Corcoran LorettaORCID,Simonetti AntonioORCID

Abstract

Identification of uraninite provenance for the purpose of nuclear forensics requires a multifaceted approach. Various geochemical signatures, such as chondrite normalized rare earth element patterns, help identify and limit the potential sources of uraninite based on the geological setting of the uranium ore mineralization. The inclusion of accurate age determinations to discriminate geochemical signatures for natural uranium ores may help to potentially restrict geographical areas for provenance consideration. Determining a robust age for uraninite formation is somewhat difficult, due to well known, inherent difficulties associated with open system behavior that involve either uranium and/or lead loss or gain. However, open system behavior should not perturb their Pb isotopic compositions to the same degree as Pb isotopes should not fractionate during alteration processes. Here, a suite of pristine and altered samples of uraninite was examined for their Pb isotope compositions, and these yielded geologically meaningful secondary Pb–Pb isochron ages. The degree of alteration within individual uraninite samples, which is extremely variable, does not appear to affect the calculated ages. The approach adopted here yields insightful age information, and hence, is of great value for source attribution in forensic analyses of raw nuclear materials.

Funder

U.S. Department of Homeland Security

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3