Affiliation:
1. Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
2. Department of Computer Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
Abstract
This paper investigates the bipolar resistive switching and synaptic characteristics of IZO single-layer and IZO/SiO2 bilayer two-terminal memory devices. The chemical properties and structure of the device with a SiO2 layer are confirmed by x-ray photoemission spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The device with the SiO2 layer showed better memory characteristics with a low current level, as well as better cell-to-cell and cycle-to-cycle uniformity. Moreover, the neuromorphic applications of the IZO/SiO2 bilayer device are demonstrated by pulse response. Paired pulse facilitation, excitatory postsynaptic current, and pulse-width-dependent conductance changes are conducted by the coexistence of short- and long-term memory characteristics. Moreover, Hebbian rules are emulated to mimic biological synapse function. The result of potentiation, depression, spike-rate-dependent plasticity, and spike-time-dependent plasticity prove their favorable abilities for future applications in neuromorphic computing architecture.
Funder
National Research Foundation of Korea
Incheon National University
Subject
General Materials Science