Optimal Capacity Sizing for the Integration of a Battery and Photovoltaic Microgrid to Supply Auxiliary Services in Substations under a Contingency

Author:

Tabares Alejandra,Martinez Norberto,Ginez Lucas,Resende José F.,Brito Nierbeth,Franco John FredyORCID

Abstract

Auxiliary services are vital for the operation of a substation. If a contingency affects the distribution feeder that provides energy for the auxiliary services, it could lead to the unavailability of the substation’s service. Therefore, backup systems such as diesel generators are used. Another alternative is the adoption of a microgrid with batteries and photovoltaic generation to supply substation auxiliary services during a contingency. Nevertheless, high battery costs and the intermittence of photovoltaic generation requires a careful analysis so the microgrid capacity is defined in a compromise between the investment and the unavailability reduction of auxiliary services. This paper proposes a method for the capacity sizing of a microgrid with batteries, photovoltaic generation, and bidirectional inverters to supply auxiliary services in substations under a contingency. A set of alternatives is assessed through exhaustive search and Monte Carlo simulations to cater for uncertainties of contingencies and variation of solar irradiation. An unavailability index is proposed to measure the contribution of the integrated hybrid microgrid to reduce the time that the substation is not in operation. Simulations carried out showed that the proposed method identifies the microgrid capacity with the lowest investment that satisfies a goal for the unavailability of the substation service.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3