Abstract
Selecting the sizes of distributed energy resources is a central planning element when designing a microgrid. Decision makers may consider several important factors, including, but not limited to, capacity, cost, reliability and sustainability. We introduce a method for rightsizing capacity that presents a range of potential microgrid design solutions, allowing decision makers to weigh their upsides and downsides based on a variety of measurable factors. We decouple component-specific modeling assumptions, energy management system logic and objective measurements from our simulation-based nested binary search method for rightsizing to meet power loads. In doing so, we develop a flexible, customizable and extensible approach to microgrid design planning. Aspects which have traditionally been incorporated directly in optimization-centric frameworks, such as resilience and reliability, can be treated as complementary analyses in our decoupled approach. This enables decision makers to gain exposure to a wide range of relevant information and actively participate in the microgrid design assessment process.
Funder
Office of Naval Research
Navy Shore Energy Technology Transition and Integration
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献