Energy-Efficient Speed Profile Optimization and Sliding Mode Speed Tracking for Metros

Author:

Wang XiaowenORCID,Xiao Zhuang,Chen Mo,Sun Pengfei,Wang Qingyuan,Feng Xiaoyun

Abstract

Nowadays, most metro vehicles are equipped with an automatic train operation (ATO) system, and the speed control method, combining cruise speed planning and proportional-integral-derivative (PID) control, is widely used. The automation is achieved, and the energy-efficient can be improved. This paper presents an improved artificial bee colony algorithm for speed profile optimization with coast mode and an adaptive terminal sliding mode method for speed tracking. Specifically, a multi-objective optimization model is established, which considers energy consumption, comfortableness, and punctuality. Then, a novel artificial bee colony algorithm named regional reinforcement artificial bee colony (RR-ABC) is designed, to search the optimal speed profile with coast mode, in which some improvements are made to speed up convergence and to avoid local optimal solutions. For speed-tracking control, the adaptive terminal sliding mode controller (ATSMC) is used to improve the speed error, robustness, and energy saving. In addition, a disturbance observer (DOB) is designed to improve the anti-interference ability of the system and further improve the robustness and anti-disturbance, which are also conducive to speed error and energy saving. Finally, the line and train data of the Qingdao Metro Line 6 are used for simulation, which proves the effectiveness of the study. Specific to the energy saving rate, and compared with normal algorithms, RR-ABC with coast mode is approximately 9.55%, and ATSMC+DOB is 7.58%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3