The Effect of CO2 Concentration on Children’s Well-Being during the Process of Learning

Author:

Bogdanovica Snezana,Zemitis JurgisORCID,Bogdanovics RaimondsORCID

Abstract

There are more than 200 thousand pupils in Latvia. Most of them are still learning in non-renovated classrooms without proper mechanical ventilation. The classrooms are often ventilated only during the breaks by opening windows. This can lead to increased CO2 levels and reduced mental performance. To test how CO2 concentration in classrooms influences student attention level and their ability to perform mental tasks, the students had to complete a short test at the start and the end of the class. At the same time CO2 concentration, temperature and relative humidity were logged. In addition, an anonymous survey on how the pupils felt regarding the overall indoor environmental quality (IEQ) in the classroom, their thermal sensation, are they fatigued, any difficulty concentrating and if they have headaches during the lesson performed. The measurements were performed in a Secondary School in Daugavpils, Latvia. The analysis of results shows that existing 10 min breaks are not enough to fully ventilate the classroom, and they must be increased to at least 15 min. At the same time, 30 min breaks can be reduced to 20 min. The correlation between CO2 concentration and test results of pupils’ performance test results is noticeable but not definitive. It indicates that at increased CO2 levels the performance lowers—when the concentration of CO2 corresponds only to the Category 3 norm, the lowest results are achieved while the best results are when the CO2 concentration level corresponds to Category 1. To improve the study, observations of CO2 concentrations must be extended throughout the school year, as well as measurements in other classrooms in the school should be made.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3