Study of Surface Roughness Effect on a Bluff Body—The Formation of Asymmetric Separation Bubbles

Author:

Bimbato Alex MendonçaORCID,Alcântara Pereira Luiz AntonioORCID,Hirata Miguel Hiroo

Abstract

Turbulent flows around bluff bodies are present in a large number of aeronautical, civil, mechanical, naval and oceanic engineering problems and still need comprehension. This paper provides a detailed investigation of turbulent boundary layer flows past a bluff body. The flows are disturbed by superficial roughness effect, one of the most influencing parameters present in engineering applications. A roughness model, recently developed by the authors, is here employed in order to capture the main features of these complex flows. Starting from subcritical Reynolds number simulations (Re = 1.0 × 105), typical phenomena found on critical and supercritical flow regimes are successfully captured, like non-zero lift force and its direction change, drag crisis followed by a gradual increase on this force, and separation and stagnation points displacement. The main contribution of this paper is to present a wide discussion related with the temporal history of aerodynamic loads of a single rough circular cylinder capturing the occurrence of asymmetric separation bubbles generation. The formation of asymmetric separation bubbles is an intrinsic phenomenon of the physical problem, which is successfully reported by our work. Unfortunately, there is a lack of numerical results available in the literature discussing the problem, which has also motivated the present paper. Previous study of our research group has only discussed the drag crisis, without to investigate its gradual increase and the change on lift force direction. Our results again confirm that the Lagrangian vortex method in association with Large-Eddy Simulation (LES) theory enables the development of two-dimensional roughness models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3