Experimental Investigations and Optimization of Machining Parameters in CNC Turning of SS304 Using Coolant at 0 °C

Author:

Patil PravinORCID,Karande Prasad

Abstract

During the machining process, coolant is utilized to remove chips and tiny abrasive particles created during the machining process as well as to lessen heat concentration and friction between tools and chips. The machining performances, such as tool life, surface roughness, cutting forces, retention of mechanical properties of the work material, etc., are also desired to be retained or improved at the same time. This presented research work’s main goal is to investigate and analyze the impact of coolant at 0 °C on input machining parameters when turning SS304 (an austenitic stainless steel of the 300 series with high corrosion resistance) on a CNC lathe and to optimize the input variable factors, such as feed rate, cutting speed, and depth of cut for the best machining conditions, and each input cutting parameter is given a weight using the analytic hierarchy process (AHP) technique. A novel experimental setup is created to decrease the temperature of emulsion coolant and to use it in control conditions during machining operation. To research and assess the impact on the workpiece surface roughness, forces produced during actual cutting operations, the rate of tool wear, and the rate of material removal, twenty-seven sets of experiments using the partial factorial design approach are devised and carried out. Prioritizing the many optimal solutions accessible for this work is done using the technique for the order of preference by similarity to ideal solution (TOPSIS) and grey relation grade (GRG) approaches. Further, the surface finish of the workpiece after machining, rate of tool wear, cutting force generated during machining, and material removal rate from the workpiece were compared with traditionally/conventionally used input parameters with newly obtained optimized parameters through this work. Approximately a 30% improvement is observed in output parameters compared with using traditional parameters, and was close to the 50% of the result obtained through cryogenic machining. The work piece’s chip morphology along with tool wear was observed in form of SEM images, and it supports the claim of the surface finish and tool wear. The material removal rate was physically observed during machining. SEM pictures were used to physically validate the changes in tool wear. It has also been shown that keeping the coolant temperature at 0 °C significantly improves a number of work quality and machining characteristics. This method offers a substitute for cryogenic machining, making it useful for the manufacturing sectors.

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3