The analysis of the effect of varying feed values in each pass on tool wear and surface roughness in turning of AISI 4140

Author:

Sönmez Fikret1ORCID

Affiliation:

1. Department of Mechanical Engineering, Hasan Ferdi Turgutlu Faculty of Technology, Manisa Celal Bayar University, Manisa 45400, Turkey

Abstract

Machining is a complex process between the cutting tool and the workpiece, and in this process, the cutting tool constantly wears out with various wear mechanisms. Tool-wear estimation in turning is a complicated process; thus, there is a need for a study to reveal the time-dependent behavior of tool wear. In this study, tool wear and surface roughness change during the turning process of AISI 4140 steel at low cutting speeds were examined in detail with variable feed values for the first time. For this purpose, a half-minute cutting time was applied for each pass to analyze the tool wear as gradually as possible. Tool wear (flank, notch, and nose), surface roughness (Ra, Rz, and Rt), and chip morphologies were examined after each turning operation. The flank wear reached 0.3 mm, which is one of the tool life criteria according to ISO 3685, and the experiments were terminated at the 149th minute. Initially, a significant surface improvement (approx. 300%) was observed due to the decrease in feed values. In subsequent experiments, the effect of feed was significantly reduced due to increased tool wear, and limited surface roughness improvement (approx. 30%) was observed. At the beginning of the experiment, the chip breaker function of the cutting insert was successful at almost all feeds. However, in subsequent experiments, it was found that even at higher feeds, the chip breaker geometry of the insert deteriorated due to tool wear, causing changes in chip morphology, and resulting in long and undesirable chips.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3