Harbor Aquaculture Area Extraction Aided with an Integration-Enhanced Gradient Descent Algorithm

Author:

Zhong Yafeng,Liao SiyuanORCID,Yu GuoORCID,Fu Dongyang,Huang HaoenORCID

Abstract

In this study, the harbor aquaculture area tested is Zhanjiang coast, and for the remote sensing data, we use images from the GaoFen-1 satellite. In order to achieve a superior extraction performance, we propose the use of an integration-enhanced gradient descent (IEGD) algorithm. The key idea of this algorithm is to add an integration gradient term on the basis of the gradient descent (GD) algorithm to obtain high-precision extraction of the harbor aquaculture area. To evaluate the extraction performance of the proposed IEGD algorithm, comparative experiments were performed using three supervised classification methods: the neural network method, the support vector machine method, and the maximum likelihood method. From the results extracted, we found that the overall accuracy and F-score of the proposed IEGD algorithm for the overall performance were 0.9538 and 0.9541, meaning that the IEGD algorithm outperformed the three comparison algorithms. Both the visualized and quantitative results demonstrate the high precision of the proposed IEGD algorithm aided with the CEM scheme for the harbor aquaculture area extraction. These results confirm the effectiveness and practicality of the proposed IEGD algorithm in harbor aquaculture area extraction from GF-1 satellite data. Added to that, the proposed IEGD algorithm can improve the extraction accuracy of large-scale images and be employed for the extraction of various aquaculture areas. Given that the IEGD algorithm is a type of supervised classification algorithm, it relies heavily on the spectral feature information of the aquaculture object. For this reason, if the spectral feature information of the region of interest is not selected properly, the extraction performance of the overall aquaculture area will be extremely reduced.

Funder

Department of Education of Guangdong Province

Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3