A Modeling Method for Automatic Extraction of Offshore Aquaculture Zones Based on Semantic Segmentation

Author:

Sui Baikai,Jiang Tao,Zhang ZhenORCID,Pan Xinliang,Liu Chenxi

Abstract

Monitoring of offshore aquaculture zones is important to marine ecological environment protection and maritime safety and security. Remote sensing technology has the advantages of large-area simultaneous observation and strong timeliness, which provide normalized monitoring of marine aquaculture zones. Aiming at the problems of weak generalization ability and low recognition rate in weak signal environments of traditional target recognition algorithm, this paper proposes a method for automatic extraction of offshore fish cage and floating raft aquaculture zones based on semantic segmentation. This method uses Generative Adversarial Networks to expand the data to compensate for the lack of training samples, and uses ratio of green band to red band (G/R) instead of red band to enhance the characteristics of aquaculture spectral information, combined with atrous convolution and atrous space pyramid pooling to enhance the context semantic information, to extract and identify two types of offshore fish cage zones and floating raft aquaculture zones. The experiment is carried out in the eastern coastal waters of Shandong Province, China, and the overall identification accuracy of the two types of aquaculture zones can reach 94.8%. The results show that the method proposed in this paper can realize high-precision extraction both of offshore fish cage and floating raft aquaculture zones.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Key Technology Research and Development Program of Shandong

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3