Remote Sensing Detecting of Yellow Leaf Disease of Arecanut Based on UAV Multisource Sensors

Author:

Lei Shuhan,Luo Jianbiao,Tao Xiaojun,Qiu ZixuanORCID

Abstract

Unmanned aerial vehicle (UAV) remote sensing technology can be used for fast and efficient monitoring of plant diseases and pests, but these techniques are qualitative expressions of plant diseases. However, the yellow leaf disease of arecanut in Hainan Province is similar to a plague, with an incidence rate of up to 90% in severely affected areas, and a qualitative expression is not conducive to the assessment of its severity and yield. Additionally, there exists a clear correlation between the damage caused by plant diseases and pests and the change in the living vegetation volume (LVV). However, the correlation between the severity of the yellow leaf disease of arecanut and LVV must be demonstrated through research. Therefore, this study aims to apply the multispectral data obtained by the UAV along with the high-resolution UAV remote sensing images to obtain five vegetation indexes such as the normalized difference vegetation index (NDVI), optimized soil adjusted vegetation index (OSAVI), leaf chlorophyll index (LCI), green normalized difference vegetation index (GNDVI), and normalized difference red edge (NDRE) index, and establish five algorithm models such as the back-propagation neural network (BPNN), decision tree, naïve Bayes, support vector machine (SVM), and k-nearest-neighbor classification to determine the severity of the yellow leaf disease of arecanut, which is expressed by the proportion of the yellowing area of a single areca crown (in percentage). The traditional qualitative expression of this disease is transformed into the quantitative expression of the yellow leaf disease of arecanut per plant. The results demonstrate that the classification accuracy of the test set of the BPNN algorithm and SVM algorithm is the highest, at 86.57% and 86.30%, respectively. Additionally, the UAV structure from motion technology is used to measure the LVV of a single areca tree and establish a model of the correlation between the LVV and the severity of the yellow leaf disease of arecanut. The results show that the relative root mean square error is between 34.763% and 39.324%. This study presents the novel quantitative expression of the severity of the yellow leaf disease of arecanut, along with the correlation between the LVV of areca and the severity of the yellow leaf disease of arecanut. Significant development is expected in the degree of integration of multispectral software and hardware, observation accuracy, and ease of use of UAVs owing to the rapid progress of spectral sensing technology and the image processing and analysis algorithms.

Funder

Hainan Provincial Key Research and Development Plan of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3