Functional Characterization, Antimicrobial Effects, and Potential Antibacterial Mechanisms of NpHM4, a Derived Peptide of Nautilus pompilius Hemocyanin

Author:

Yuan Chun,Zheng Xiaoying,Liu Kunna,Yuan Wenbin,Zhang YangORCID,Mao Fan,Bao Yongbo

Abstract

Hemocyanins present in the hemolymph of invertebrates are multifunctional proteins that are responsible for oxygen transport and play crucial roles in the immune system. They have also been identified as a source of antimicrobial peptides during infection in mollusks. Hemocyanin has also been identified in the cephalopod ancestor Nautilus, but antimicrobial peptides derived from the hemocyanin of Nautilus pompilius have not been reported. Here, the bactericidal activity of six predicted peptides from N. pompilius hemocyanin and seven mutant peptides was analyzed. Among those peptides, a mutant peptide with 15 amino acids (1RVFAGFLRHGIKRSR15), NpHM4, showed relatively high antibacterial activity. NpHM4 was determined to have typical antimicrobial peptide characteristics, including a positive charge (+5.25) and a high hydrophobic residue ratio (40%), and it was predicted to form an alpha-helical structure. In addition, NpHM4 exhibited significant antibacterial activity against Gram-negative bacteria (MBC = 30 μM for Vibrio alginolyticus), with no cytotoxicity to mammalian cells even at a high concentration of 180 µM. Upon contact with V. alginolyticus cells, we confirmed that the bactericidal activity of NpHM4 was coupled with membrane permeabilization, which was further confirmed via ultrastructural images using a scanning electron microscope. Therefore, our study provides a rationalization for the development and optimization of antimicrobial peptide from the cephalopod ancestor Nautilus, paving the way for future novel AMP development with broad applications.

Funder

Zhejiang Major Program of Science and Technology

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3