Deep Learning Case Study for Automatic Bird Identification

Author:

Niemi JuhaORCID,Tanttu Juha

Abstract

An automatic bird identification system is required for offshore wind farms in Finland. Indubitably, a radar is the obvious choice to detect flying birds, but external information is required for actual identification. We applied visual camera images as external data. The proposed system for automatic bird identification consists of a radar, a motorized video head and a single-lens reflex camera with a telephoto lens. A convolutional neural network trained with a deep learning algorithm is applied to the image classification. We also propose a data augmentation method in which images are rotated and converted in accordance with the desired color temperatures. The final identification is based on a fusion of parameters provided by the radar and the predictions of the image classifier. The sensitivity of this proposed system, on a dataset containing 9312 manually taken original images resulting in 2.44 × 106 augmented data set, is 0.9463 as an image classifier. The area under receiver operating characteristic curve for two key bird species is 0.9993 (the White-tailed Eagle) and 0.9496 (The Lesser Black-backed Gull), respectively. We proposed a novel system for automatic bird identification as a real world application. We demonstrated that our data augmentation method is suitable for image classification problem and it significantly increases the performance of the classifier.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Avian collision risk at an offshore wind farm

2. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies

3. A comparison of scavenging bird deterrence techniques at UK landfill sites*

4. WT-Bird A Novel Bird Impact Detection Systemwww.ecn.nl/docs/library/report/2002/rx02055.pdf

5. Bird Collision Monitoring System for Multi-Megawatt Wind Turbines, WT-Bird: Prototype Development and Testingwww.ecn.nl/publications/PdfFetch.aspx?nr=ECN-E--06-027

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3