Cascade Classifier for the Detection and Identification of Birds in a Videostream

Author:

Vlasov Evgeny,Krasnenko Nikolay

Abstract

A method and a prototype of the program for detecting the presence of birds in the video data flow in real time are presented in the paper. The method is based on the cascade classifier solving the problem of bird detection and identification with the use of a bioacoustic bird scaring system deployed at the Tomsk airport. In our research, the Viola-Jones cascade classifier representing one of the implementations of the Haar cascade algorithm has been used. This algorithm allows objects to be detected in images and videos with high accuracy and rate. In this case, the classifier was leaned on the data set containing images of birds that allowed us to reach high accuracy of bird detection and identification in the videos. The possibilities of the developed classifier are also estimated, and its high productivity is shown. In this study, various methods of machine learning and video data analysis are used to obtain exact and reliable results. As a whole, the present work is an innovative approach to a solution to the urgent problem of airport protection from birds. The application of the developed method has allowed the operating efficiency of the bioacoustic bird scaring system to be increased together with the safety of flights at the Tomsk airport, thereby decreasing the probability of airplane collisions with birds. The novelty of the work consists of the application of the Viola–Jones method for solving the problem of bird detection and identification and estimating its efficiency. Thus, this work is an important contribution to the development of methods for detecting and identifying objects in videos and can also be used in other fields of science and technology in which the automatic detection and classification of objects in the video data flow is required.

Publisher

SPIIRAS

Reference42 articles.

1. Рогачев А.И., Лебедев А.М. Орнитологическое обеспечение безопасности полетов // М.: изд-во «Транспорт». 1984. 126 с.

2. Силаева О.Л., Ильичёв В.Д., Золотарев С.С. Основные направления авиационной орнитологии // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2010. № 5. С. 10–14.

3. Рыжов С.К. Столкновения с птицами. Актуальные аспекты // Труды общества независимых расследователей авиационных происшествий. Москва. 2013. № 25. С. 175–179.

4. Desoky A.A.S. A review of bird control methods at airports // Global journal of science frontier research (E). 2014. vol. 14(2). pp. 40–50.

5. Кухта А.Е., Большакова Н.П., Мацюра А.В. Концептуальные подходы к орнитологическому обеспечению безопасности полётов воздушных судов // Вестник Тувинского государственного университета. Естественные и сельскохозяйственные науки. 2017. № 2. С. 96–105.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3