A Thermal Anemometry Method for Studying the Unsteady Gas Dynamics of Pipe Flows: Development, Modernisation, and Application

Author:

Plotnikov Leonid1ORCID

Affiliation:

1. Department of Turbines and Engines, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Str. Mira 19, 620002 Yekaterinburg, Russia

Abstract

A detailed study of the gas-dynamic behaviour of both liquid and gas flows is urgently required for a variety of technical and process design applications. This article provides an overview of the application and an improvement to thermal anemometry methods and tools. The principle and advantages of a hot-wire anemometer operating according to the constant-temperature method are described. An original electronic circuit for a constant-temperature hot-wire anemometer with a filament protection unit is proposed for measuring the instantaneous velocity values of both stationary and pulsating gas flows in pipelines. The filament protection unit increases the measuring system’s reliability. The designs of the hot-wire anemometer and filament sensor are described. Based on development tests, the correct functioning of the measuring system was confirmed, and the main technical specifications (the time constant and calibration curve) were determined. A measuring system for determining instantaneous gas flow velocity values with a time constant from 0.5 to 3.0 ms and a relative uncertainty of 5.1% is proposed. Based on pilot studies of stationary and pulsating gas flows in different gas-dynamic systems (a straight pipeline, a curved channel, a system with a poppet valve or a damper, and the external influence on the flow), the applications of the hot-wire anemometer and sensor are identified.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3