Visualization of the shielding gas flow in SLM machines by space-resolved thermal anemometry

Author:

Schniedenharn Maximilian,Wiedemann Frederik,Schleifenbaum Johannes Henrich

Abstract

Purpose The purpose of this paper is to introduce an approach in measuring the shielding gas flow within laser powder bed fusion (L-PBF) machines under near-process conditions (regarding oxygen content and shielding gas flow). Design/methodology/approach The measurements are made sequentially using a hot-wire anemometer. After a short introduction into the measurement technique, the system which places the measurement probe within the machine is described. Finally, the measured shielding gas flow of a commercial L-PBF machine is presented. Findings An approach to measure the shielding gas flow within SLM machines has been developed and successfully tested. The use of a thermal anemometer along with an automated probe-placement system enables the space-resolved measurement of the flow speed and its turbulence. Research limitations/implications The used single-normal (SN) hot-wire anemometer does not provide the flow vectors’ orientation. Using a probe with two or three hot-films and an improved placement system will provide more information about the flow and less disturbance to it. Originality/value A measurement system which allows the measurement of the shielding gas flow within commercial L-PBF machines is presented. This enables the correlation of the shielding gas flow with the resulting parts’ quality.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference17 articles.

1. Aerodynamic disturbances of hot-wire probes and directional sensitivity;Journal of Physics E: Scientific Instruments,1984

2. Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength;Journal of Materials Processing Technology,2016

3. The development lengths of laminar pipe and channel flows;Journal of Fluids Engineering,2005

4. Gas flow effects on selective laser melting (SLM) manufacturing performance;Journal of Materials Processing Technology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3