A Split Luciferase Complementation Assay for the Quantification of β-Arrestin2 Recruitment to Dopamine D2-Like Receptors

Author:

Forster LisaORCID,Grätz LukasORCID,Mönnich Denise,Bernhardt Günther,Pockes SteffenORCID

Abstract

Investigations on functional selectivity of GPCR ligands have become increasingly important to identify compounds with a potentially more beneficial side effect profile. In order to discriminate between individual signaling pathways, the determination of β-arrestin2 recruitment, in addition to G-protein activation, is of great value. In this study, we established a sensitive split luciferase-based assay with the ability to quantify β-arrestin2 recruitment to D2long and D3 receptors and measure time-resolved β-arrestin2 recruitment to the D2long receptor after agonist stimulation. We were able to characterize several standard (inverse) agonists as well as antagonists at the D2longR and D3R subtypes, whereas for the D4.4R, no β-arrestin2 recruitment was detected, confirming previous reports. Extensive radioligand binding studies and comparisons with the respective wild-type receptors confirm that the attachment of the Emerald luciferase fragment to the receptors does not affect the integrity of the receptor proteins. Studies on the involvement of GRK2/3 and PKC on the β-arrestin recruitment to the D2longR and D3R, as well as at the D1R using different kinase inhibitors, showed that the assay could also contribute to the elucidation of signaling mechanisms. Its broad applicability, which provides concentration-dependent and kinetic information on receptor/β-arrestin2 interactions, renders this homogeneous assay a valuable method for the identification of biased agonists.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3