D-Chiro-Inositol Treatment Affects Oocyte and Embryo Quality and Improves Glucose Intolerance in Both Aged Mice and Mouse Models of Polycystic Ovarian Syndrome

Author:

Pericuesta Eva,Laguna-Barraza Ricardo,Ramos-Ibeas PriscilaORCID,Gutierrez-Arroyo Julia L.,Navarro Juan A.ORCID,Vera Katia,Sanjuan Carlos,Baixeras Elena,de Fonseca Fernando RodríguezORCID,Gutierrez-Adan AlfonsoORCID

Abstract

Polycystic ovarian syndrome (PCOS) is the main cause of female infertility. It is a multifactorial disorder with varying clinical manifestations including metabolic/endocrine abnormalities, hyperandrogenism, and ovarian cysts, among other conditions. D-Chiro-inositol (DCI) is the main treatment available for PCOS in humans. To address some of the mechanisms of this complex disorder and its treatment, this study examines the effect of DCI on reproduction during the development of different PCOS-associated phenotypes in aged females and two mouse models of PCOS. Aged females (8 months old) were treated or not (control) with DCI for 2 months. PCOS models were generated by treatment with dihydrotestosterone (DHT) on Days 16, 17, and 18 of gestation, or by testosterone propionate (TP) treatment on the first day of life. At two months of age, PCOS mice were treated with DCI for 2 months and their reproductive parameters analyzed. No effects of DCI treatment were produced on body weight or ovary/body weight ratio. However, treatment reduced the number of follicles with an atretic cyst-like appearance and improved embryo development in the PCOS models, and also increased implantation rates in both aged and PCOS mice. DCI modified the expression of genes related to oocyte quality, oxidative stress, and luteal sufficiency in cumulus-oocyte complexes (COCs) obtained from the aged and PCOS models. Further, the phosphorylation of AKT, a main metabolic sensor activated by insulin in the liver, was enhanced only in the DHT group, which was the only PCOS model showing glucose intolerance and AKT dephosphorylation. The effect of DCI in the TP model seemed mediated by its influence on oxidative stress and follicle insufficiency. Our results indicate that DCI works in preclinical models of PCOS and offer insight into its mechanism of action when used to treat this infertility-associated syndrome.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3