Built Environment Renewal Strategies Aimed at Improving Metro Station Vitality via the Interpretable Machine Learning Method: A Case Study of Beijing

Author:

Wang Zhenbao1ORCID,Li Shihao1,Zhang Yushuo1,Wang Xiao1,Liu Shuyue1,Liu Dong1

Affiliation:

1. School of Architecture and Art, Hebei University of Engineering, Handan 056038, China

Abstract

Understanding the built environment’s impact on metro ridership is essential for developing targeted strategies for built environment renewal. Taking into consideration the limitations of existing studies, such as not proposing targeted strategies, using unified pedestrian catchment areas (PCA), and not determining the model’s accuracy, Beijing was divided into three zones from inside to outside by the distribution pattern of metro stations. Three PCAs were assumed for each zone and a total of 27 PCA combinations. The study compared the accuracy of the Ordinary Least Square (OLS) and several machine learning models under each PCA combination to determine the model to be used in this study and the recommended PCA combination for the three zones. Under the recommended PCA combinations for the three zones, the model with the highest accuracy was used to explore the built environment’s impact on metro ridership. Finally, prioritized stations for renewal were identified based on ridership and the built environment’s impact on metro ridership. The results are as follows: (1) The eXtreme Gradient Boosting (XGBoost) model has a higher accuracy and was appropriate for this study. The recommended PCA combination for the three zones in Beijing was 1000 m_1200 m_1800 m. (2) During the morning peak hours, the density of office and apartment facilities greatly influenced the ridership, with a strong threshold effect and spatial heterogeneity. Our research framework also provides a new way for other cities to determine the scope of Transit-Oriented Development (TOD) and proposes a new decision-making method for improving the vibrancy of metro stations.

Funder

Hebei Social Science Development Research Project in 2023

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3