Investigating the Nonlinear Effect of Land Use and Built Environment on Public Transportation Choice Using a Machine Learning Approach

Author:

Wang Zhenbao1ORCID,Liu Shuyue1,Lian Haitao1,Chen Xinyi2

Affiliation:

1. School of Architecture and Art, Hebei University of Engineering, Handan 056038, China

2. School of Architecture, Tianjin University, Tianjin 300072, China

Abstract

Understanding the relationship between the demand for public transportation and land use is critical to promoting public-transportation-oriented urban development. Taking Beijing as an example, we took the Public Transportation Index (PTI) during the working day’s early peak hours as the dependent variable. And 15 land use and built environment variables were selected as the independent variables according to the “7D” built environment dimensions. According to the Modifiable Areal Unit Problem (MAUP), the size and shape of the spatial units will affect the aggregation results of the dependent variable and the independent variables. To find the ideal spatial unit division method, we assess how well the nonlinear model fits several spatial units. Extreme Gradient Boosting (XGBoost) was utilized to investigate the nonlinear effects of the built environment on PTI and threshold effects based on the ideal spatial unit. The results show that (1) the best spatial unit division method is based on traffic analysis zones (TAZs); (2) the top four explanatory variables affecting PTI are, in order: mean travel distance, residential density, subway station density, and public services density; (3) there are nonlinear relationships and significant threshold effects between the land use variables and PTI. The priority regeneration TAZs were identified according to the intersection analysis of the low PTI TAZs set and the PTI-sensitive TAZs set based on different land use variables. Prioritized urban regeneration TAZs require targeted strategies, and the results of the study may provide a scientific basis for proposing strategies to renew land use to increase PTI.

Funder

Hebei Province Social Science Fund Project, 2019

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3