Spatial Path Planning for Robotic Milling of Automotive Casting Components Based on Optimal Machining Posture

Author:

Wu Hao,Wang Yudi,Wei Xiaoxu,Zhu Dahu

Abstract

The robotic milling of automotive casting components can effectively reduce human participation in the production process and enhance production efficiency and quality, but the premise addresses the reasonable planning of machining paths. To address major challenges, this paper proposes a spatial path planning method for the robotic milling of casting flash and burrs on an automotive engine flywheel shell based on the optimal machining posture. Firstly, an improved stereolithography slicing algorithm in arbitrary tangent plane direction is put forward, which solves the problem that the existing stereolithography slicing algorithm cannot accurately extract the contour of complex components. Secondly, the contour path curve fitting of the slicing points of the flywheel shell is realized based on the B-spline curve. Next, a machining posture evaluation function is established based on the robot’s stiffness performance, and the optimal machining posture is solved and verified with simulation according to the machining posture evaluation function and posture interpolation. Finally, the experiments indicate that the proposed method can significantly enhance the machining quality, with an average allowance height of 0.33 mm, and reduce the machining time to 9 min, compared with the conventional manual operation, both of which satisfy the machining requirements.

Funder

Hubei Province Key R&D Program

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3