Deceleration Planning Algorithm Based on Classified Multi-Layer Perceptron Models for Smart Regenerative Braking of EV in Diverse Deceleration Conditions

Author:

Sim GyubinORCID,Min KyunghanORCID,Ahn SeongjuORCID,Sunwoo MyounghoORCID,Jo KichunORCID

Abstract

The smart regenerative braking system (SRS) is an autonomous version of one-pedal driving in electric vehicles. To implement SRS, a deceleration planning algorithm is necessary to generate the deceleration used in automatic regenerative control. To reduce the discomfort from the automatic regeneration, the deceleration should be similar to human driving. In this paper, a deceleration planning algorithm based on multi-layer perceptron (MLP) is proposed. The MLP models can mimic the human driving behavior by learning the driving data. In addition, the proposed deceleration planning algorithm has a classified structure to improve the planning performance in each deceleration condition. Therefore, the individual MLP models were designed according to three different deceleration conditions: car-following, speed bump, and intersection. The proposed algorithm was validated through driving simulations. Then, time to collision and similarity to human driving were analyzed. The results show that the minimum time to collision was 1.443 s and the velocity root-mean-square error (RMSE) with human driving was 0.302 m/s. Through the driving simulation, it was validated that the vehicle moves safely with desirable velocity when SRS is in operation, based on the proposed algorithm. Furthermore, the classified structure has more advantages than the integrated structure in terms of planning performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3