Author:
Hościło Agata,Lewandowska Aneta
Abstract
There are a limited number of studies addressing the forest status, its extent, location, type and composition over a larger area at the regional or national levels. The dense time series and a wide swath of Sentinel-2 data are a good basis for forest mapping and tree species identification over a large area. This study presents the results of the classification of the forest/non-forest cover, forest type (broadleaf and coniferous) and the identification of eight tree species (beech, oak, alder, birch, spruce, pine, fir, and larch) using the multi-temporal Sentinel-2 data in combination with topographic information. The study was conducted over the large mountain area located in southern Poland. The Random Forest classifier was used to first derive a forest/non-forest map. Second, the forest was classified into broadleaf and coniferous. Finally, the tree species classification was carried out following two approaches: (i) Non-stratified, where all species were classified together within the forest mask and (ii) stratified, where the broadleaf and coniferous tree species were classified separately within the forest type masks. The overall accuracy for the forest/non-forest cover reached 98.3% and declined slightly to 94.8% for the classification of the forest type. The use of the topographic information did not increase the accuracy of either result. The role of the topographic variables increased significantly in the process of tree species delineation. By combining the topographic information (in particular, digital elevation model) with the multi-temporal Sentinel-2 data, the classification of eight tree species improved from 75.6% to 81.7% (approach 1). A further increase in accuracy to 89.5% for broadleaf and 82% for coniferous species was observed following the stratified approach number 2. The highest overall accuracy (above 85%) was obtained for beech, oak, birch, alder, and larch. The study confirmed the potential of the multi-temporal Sentinel-2 data for accurate delineation of the forest cover, forest type, and tree species at the regional scale.
Subject
General Earth and Planetary Sciences
Reference63 articles.
1. Remote Sensing for Sustainable Forest Management;Franklin,2001
2. Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amounts. 92-9219-055-5https://unfccc.int/resource/docs/publications/08_unfccc_kp_ref_manual.pdf
3. Global Warming of 1.5 °C, an IPCC Special Report on the Impacts of Global Warming of 1.5°C Above pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2018
4. Europe’s forest management did not mitigate climate warming
5. Biodiversity, disturbances, ecosystem function and management of European forests