Study on the Influencing Factors of Forest Tree-Species Classification Based on Landsat and Sentinel-2 Imagery

Author:

Lai Xin1,Tang Xu2ORCID,Ren Zhaotong1,Li Yuecan1,Huang Runlian1,Chen Jianjun1,You Haotian1ORCID

Affiliation:

1. College of Geomatics and Geoinformation, Guilin University of Technology, No. 12 Jian’gan Road, Guilin 541006, China

2. Guangxi Forest Inventory & Planning Institute, No. 14 Zhonghua Road, Nanning 530011, China

Abstract

Accurate forest tree-species classification not only provides data support for forest resource management but also serves as a crucial parameter for simulating various ecological processes. However, the results of forest tree-species classification have been affected by multiple factors, such as the spectral resolution, spatial resolution, and radiometric resolution of imagery, the classification algorithms used, the sample size, and the timing of image acquisition phases. Although there are many studies on the impact of individual factors on tree-species classification, there is a lack of systematic studies quantifying the magnitude of these factors’ influences, leading to uncertainties about the relative importance of different factors. In this study, Landsat-8, Landsat-9, and Sentinel-2 imagery was used as the foundational data, and random forest (RF), gradient tree boosting (GTB), and support vector machine (SVM) algorithms were employed to classify forest tree species. High-accuracy regional forest tree-species classification was achieved by exploring the impacts of spectral resolution, spatial resolution, radiometric resolution, classification algorithms, sample size, and image time phases. The results show that, for the commonly used Landsat-8, Landsat-9, and Sentinel-2 imagery, the tree-species classification results from Landsat-9 are the best, with an overall accuracy of 74.21% and a kappa of 0.71. Among the various influencing factors, the classification algorithm, image time phases, and sample size have relatively larger impacts on tree-species classification results, each exceeding 10%, while the positive impact of radiometric resolution is the smallest, at only 3.15%. Conversely, spectral and spatial resolutions had negative effects on tree-species classification results, at −4.09% and −1.4%, respectively. Based on the 30-m spring Landsat-9 and Sentinel-2 imagery, with 300 samples for each tree-species category, the classification results using the RF algorithm were the best, with an overall accuracy of 87.07% and a kappa coefficient of 0.85. The results indicate that different factors have different impacts on forest tree-species classification results, with classification algorithms, image time phases, and sample size having the largest impacts. Higher spatial and spectral resolutions do not improve the classification accuracy. Therefore, future studies should focus on selecting appropriate classification algorithms, sample sizes, and images from seasons with greater tree differences to improve tree-species classification results.

Funder

National Natural Science Foundation of China

Guangxi Science and Technology Base and Talent Project

Guangxi Natural Science Foundation

Scientific Research Foundation of Guilin University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3