Potential of High-Resolution Pléiades Imagery to Monitor Salt Marsh Evolution After Spartina Invasion

Author:

Proença BárbaraORCID,Frappart FrédéricORCID,Lubac BertrandORCID,Marieu VincentORCID,Ygorra Bertrand,Bombrun LionelORCID,Michalet Richard,Sottolichio Aldo

Abstract

An early assessment of biological invasions is important for initiating conservation strategies. Instrumental progress in high spatial resolution (HSR) multispectral satellite sensors greatly facilitates ecosystems’ monitoring capability at an increasingly smaller scale. However, species detection is still challenging in environments characterized by a high variability of vegetation mixing along with other elements, such as water, sediment, and biofilm. In this study, we explore the potential of Pléiades HSR multispectral images to detect and monitor changes in the salt marshes of the Bay of Arcachon (SW France), after the invasion of Spartina anglica. Due to the small size of Spartina patches, the spatial and temporal monitoring of Spartina species focuses on the analysis of five multispectral images at a spatial resolution of 2 m, acquired at the study site between 2013 and 2017. To distinguish between the different types of vegetation, various techniques for land use classification were evaluated. A description and interpretation of the results are based on a set of ground truth data, including field reflectance, a drone flight, historical aerial photographs, GNSS and photographic surveys. A preliminary qualitative analysis of NDVI maps showed that a multi-temporal approach, taking into account a delayed development of species, could be successfully used to discriminate Spartina species (sp.). Then, supervised and unsupervised classifications, used for the identification of Spartina sp., were evaluated. The performance of the species identification was highly dependent on the degree of environmental noise present in the image, which is season-dependent. The accurate identification of the native Spartina was higher than 75%, a result strongly affected by intra-patch variability and, specifically, by the presence of areas with a low vegetation density. Further, for the invasive Spartina anglica, when using a supervised classifier, rather than an unsupervised one, the accuracy of the classification increases from 10% to 90%. However, both algorithms highly overestimate the areas assigned to this species. Finally, the results highlight that the identification of the invasive species is highly dependent both on the seasonal presence of itinerant biological features and the size of vegetation patches. Further, we believe that the results could be strongly improved by a coupled approach, which combines spectral and spatial information, i.e., pattern-recognition techniques.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3