Effect of Heat Input and Undermatched Filler Wire on the Microstructure and Mechanical Properties of Dissimilar S700MC/S960QC High-Strength Steels

Author:

Njock Bayock FrancoisORCID,Kah PaulORCID,Mvola Belinga,Layus Pavel

Abstract

The effect of heat input on the microstructure and mechanical properties of dissimilar S700MC/S960QC high-strength steels (HSS) using undermatched filler material was evaluated. Experiments were performed using the gas metal arc welding process to weld three samples, which had three different heat input values (i.e., 15 kJ/cm, 7 kJ/cm, and 10 kJ/cm). The cooling continuous temperature (CCT) diagrams, macro-hardness values, microstructure formations, alloy element compositions, and tensile test analyses were performed with the aim of providing valuable information for improving the strength of the heat-affected zone (HAZ) of both materials. Micro-hardness measurement was conducted using the Vickers hardness test and microstructural evaluation by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The mechanical properties were characterized by tensile testing. Dissimilar welded samples (S700MC/S960QC) with a cooling rate of 10 °C/s (15 kJ/cm) showed a lower than average hardness (210 HV5) in the HAZ of S700MC than S960QC. This hardness was 18% lower compared to the value of the base material (BM). The best microstructure formation was obtained using a heat input of 10 kJ/cm, which led to the formation of bainite (B, 60% volume fraction), ferrite (F, 25% volume fraction), and retained austenite (RA, 10%) in the final microstructure of S700MC, and B (55%), martensite (M, 45%), and RA (10%), which developed at the end of the transformation of S960QC. The results showed the presence of 1.3 Ni, 0.4 Mo, and 1.6 Mn in the fine-grain heat-affected zone of S700MC. The formation of a higher carbide content at a lower cooling rate reduced both the hardness and strength.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference38 articles.

1. Dissimilar high-strength steels: Fusion welded joints, mismatches, and challenges;Mvola;Rev. Adv. Mater. Sci.,2016

2. The Effect of Heat input on the Mechanical Properties of MIG welded Dissimilar Joint;Monika;Inter. J. Eng. Res. Tech.,2013

3. Effect of cooling rate invariant selection during bainite transformation in heat affected zone of Cr-Mo steel;Sarizam;J. Eng. Appl. Sci.,2015

4. Anisotropic Ferrite Growth and Substructure Formation du Bainite Transformation in Fe-9Ni-C alloys: In-Situ Measurement;Tadashi;Mat. Trans.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3