Mechanical properties of MAG butt welded dissimilar structural steel joints with varying strength from grade S355 up to S960

Author:

Brätz OliverORCID,von Arnim Mareike,Eichler Stefan,Gericke Andreas,Hildebrand Jörg,Bergmann Jean Pierre,Kuhlmann Ulrike,Henkel Knuth-Michael

Abstract

AbstractMixed connections made of normal-strength and high-strength structural steels allow for optimized material usage and production effort in applications where, as a result of different mechanical effects on materials of the same type, it would otherwise be necessary to adjust the plate thickness. Reduced material consumption and smaller weld geometries can thus generate ecological and economic advantages. When welding high-strength structural steels, however, significant softening can occur in the heat-affected zone, which can influence the load-carrying behavior of the overall joint. Since there are currently no appropriate standards for butt welds made of steels with different strengths up to S960, a separate design concept is required. In this paper, the weldability and load-carrying capacity of multilayer MAG welded butt joints designed as mixed connections of a normal-strength structural steel S355 and a high-strength structural steel in the range S690 to S960 are investigated. Extensive experimental investigations are carried out, in which other influencing variables such as the filler metal used, the heat input, the plate thickness, and the weld geometry are varied in order to identify their effects on the load-carrying capacity of the welded joints. Among other things, the results form the basis for an empirically based design model for mixed connections.

Funder

Bundesministerium für Wirtschaft und Energie

Fraunhofer-Institut für Großstrukturen in der Produktionstechnik IGP

Publisher

Springer Science and Business Media LLC

Subject

Metals and Alloys,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3