In Vitro Antioxidant, Anti-Inflammatory Activity and Bioaccessibility of Ethanolic Extracts from Mexican Moringa oleifera Leaf

Author:

Herman-Lara Erasmo1ORCID,Rodríguez-Miranda Jesús1ORCID,Ávila-Manrique Stefany2,Dorado-López Celia2,Villalva Marisol2ORCID,Jaime Laura2ORCID,Santoyo Susana2ORCID,Martínez-Sánchez Cecilia E.1ORCID

Affiliation:

1. Tecnológico Nacional de México Campus, Tuxtepec, Calzada Victor Bravo Ahuja, No. 561, Col. Predio el Paraíso, San Juan Bautista Tuxtepec 68350, Oaxaca, Mexico

2. Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (CEI, UAM-CSIC), 28049 Madrid, Spain

Abstract

This study aimed to assess the antioxidant and anti-inflammatory properties, and bioaccessibility of Moringa oleifera ethanolic extracts using pressurized liquid extraction with varying ethanol concentrations (0%, 30%, 50%, 70%, and 100%) in water–ethanol mixtures. Quercetin derivatives and neochlorogenic acid were identified as major compounds via high-performance liquid chromatography with diode array detection. The 70% ethanol extract displayed the highest antioxidant activity and phenolic content, highlighting a strong correlation between phenolics and antioxidant potential. Extracts prepared with 50% and 70% ethanol (30 μg/mL) significantly inhibited TNF-α, IL-1β, and IL-6 cytokine secretion, with the 70% ethanol extract demonstrating robust anti-inflammatory effects. During in vitro digestion (oral, gastric, and intestinal phases), minimal changes were noted in most phenolic compounds’ post-oral phase, but reductions occurred after the gastric phase. Substantial decreases in major compounds and antioxidant activity were observed in post-gastric and intestinal phases. Overall, ethanolic extracts of Moringa oleifera, particularly those with 70% ethanol, exhibit promising antioxidant and anti-inflammatory properties, suggesting potential for developing therapeutic agents against oxidative stress and inflammation-related disorders. However, it is essential to protect these compounds to prevent their degradation during digestion.

Funder

National Council for Science and Technology of Mexico

Autonomous University of Madrid and to the Technological Institute of Mexico

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3