Flower Species Ingredient Verification Using Orthogonal Molecular Methods

Author:

Ragupathy Subramanyam1,Thirugnanasambandam Arunachalam1ORCID,Henry Thomas1,Vinayagam Varathan1ORCID,Sneha Ragupathy2,Newmaster Steven G.1

Affiliation:

1. Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

2. College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua

Abstract

Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.

Funder

Natural Health Product Research Alliance, University of Guelph

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3