A Comprehensive Review on Harnessing Soy Proteins in the Manufacture of Healthy Foods through Extrusion

Author:

Huang Yuyang1,Liu Linlin1,Sun Bingyu1,Zhu Ying1,Lv Mingshou1,Li Yang2,Zhu Xiuqing1

Affiliation:

1. College of Food Engineering, Harbin University of Commerce, Harbin 150028, China

2. College of Food Science, Northeast Agricultural University, Harbin 150030, China

Abstract

The global development of livestock production systems, accelerated by the growing demand for animal products, has greatly contributed to land-use change, greenhouse gas emissions, and pollution of the local environment. Further, excessive consumption of animal products has been linked with cardiovascular diseases, digestive system diseases, diabetes, and cancer. On the other hand, snacks, pasta, and bread available on the market are made from wheat, fat, salt, and sugar, which contribute to the risk of cardiovascular diseases. To counter these issues, a range of plant protein-based food products have been developed using different processing techniques, such as extrusion. Given the easy scalability, low cost of extrusion technology, and health benefits of soy proteins, this review focuses on the extrusion of soy protein and the potential application of soy protein-based extrudates in the manufacture of healthy, nutritious, and sustainable meat analogs, snacks, pasta products, and breakfast cereals. This review discusses the addition of soy protein to reformulate hypercaloric foods through extrusion technology. It also explores physical and chemical changes of soy proteins/soy protein blends during low and high moisture extrusion. Hydrogen bonds, disulfide bonds, and hydrophobic interactions influence the properties of the extrudates. Adding soy protein to snacks, pasta, breakfast cereals, and meat analogs affects their nutritional value, physicochemical properties, and sensory characteristics. The use of soy proteins in the production of low-calorie food could be an excellent opportunity for the future development of the soybean processing industry.

Funder

Natural Science Foundation of Heilongjiang Province

China Scholarship Council program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3