Improvement of Stress Resistance of Microencapsulated Lactobacillus plantarum by Emulsion Electrospinning

Author:

Wu Yuehan12ORCID,Zhang Shanshan2,Yan Ziyou2,Li Shiyang2,Wang Qianwen2,Gao Zhiming12

Affiliation:

1. Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Nanli Road, Wuhan 430068, China

2. Glyn O. Phillips Hydrocolloid Research Centre, School of Life and Health Sciences, Hubei University of Technology, Nanli Road, Wuhan 430068, China

Abstract

Probiotics have become increasingly recognized for their potential health-promoting properties; however, the viability of probiotics can be affected by storage and transportation processes as well as the stressful environment of the human digestive tract, preventing them from achieving effective concentration (107 CFU/mL). In this regard, the embedding technology of probiotics provides an effective protection method. Dextran-based water in water (W/W) emulsion loaded with Lactobacillus plantarum was used as spinning solution to prepare Lactobacillus plantarum-loaded electrospun fibers. The structure of the W/W emulsion and the electrospun fibers was charactered. Lactobacillus plantarum were uniformly embedded in the internal phase of the W/W emulsion and the loading efficiency was 9.70 ± 0.40 log CFU/g. After 240 min digestion in the gastrointestinal tract, and temperature treatment in 65 °C and 72 °C, the loaded probiotics maintained high activity. Even after 5 days of storage in room temperature and 4 °C, the loaded probiotic activity levels remained high, with counts >8 log CFU/g. These results suggest that probiotics encapsulated by emulsion electrospinning could be potentially delivered in a novel food delivery system used in the future food industry.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Hubei province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3