Industrial Production of Bioactive Nutrient-Enhanced Extra Virgin Olive Oil under Continuous-Flow Ultrasound and Pulsed Electric Field Treatment

Author:

Boffa Luisa1ORCID,Calcio Gaudino Emanuela1ORCID,Grillo Giorgio1ORCID,Binello Arianna1ORCID,Capaldi Giorgio1ORCID,Rego Duarte2,Pereira Marcos2,Cravotto Giancarlo1ORCID

Affiliation:

1. Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy

2. EnergyPulse Systems, Est Paco Lumiar Polo Tecnológico Lt3, 1600-546 Lisbon, Portugal

Abstract

Extra virgin olive oil (EVOO) is a cornerstone of the Mediterranean diet. Many studies have highlighted its crucial preventive role against cardiovascular disease, neurodegenerative disorders, metabolic syndrome and cancer, with these effects being due to the synergistic anti-inflammatory and antioxidant activities of minor components, such as polyphenols and tocols. The aim of the present study is to implement new technologies for olive oil mills and develop an efficient large-sized industrial process for the continuous extraction of healthier EVOOs that are enriched with these bioactive compounds. Non-thermal technologies, namely ultrasound (US) and pulsed electric field (PEF), have been tested, separately and in combination, to eliminate the need for traditional malaxation. There is extensive literature to support the efficacy of ultrasound-assisted extraction (UAE) and PEF treatments in EVOO production. A newly designed US device and a PEF industrial chamber have been combined into a single, integrated continuous-flow setup, the performance of which in the extraction of EVOO from green Coratina olives has been evaluated herein. Extraction yields, physico-chemical and organoleptic characteristics, and polyphenol and tocol contents were monitored throughout the trials, and the last three were measured at accelerated aging times (AAT) of 15 and 30 days. The US and combined US-PEF processes not only increased daily oil production (ton/day, by nearly 45%), but also eliminated the need for kneading during malaxation, resulting in significant energy savings (approximately 35%). In addition, these innovations enriched the resulting EVOO with nutritionally relevant minor components (8–12% polyphenols, 3–5% tocols), thereby elevating its quality and market value, as well as overall stability. The introduction of continuous-flow US and PEF technologies is a remarkable innovation for the EVOO industry, as they offer benefits to both producers and consumers. The EVOO resulting from non-thermal continuous-flow production meets the growing demand for healthier, nutrient-enriched products.

Funder

Knowledge and Innovation Communities (EIT-KIC) Granted EIT Food project PHENOILS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3