Soil Moisture Estimation Based on Polarimetric Decomposition and Quantile Regression Forests

Author:

Zhang LiORCID,Lv XiaoleiORCID,Wang RuiORCID

Abstract

The measurement of surface soil moisture (SSM) assists in making agricultural decisions, such as precision irrigation and flooding or drought predictions. The critical challenge for SSM estimation in vegetation-covered areas is the coupling between vegetation and surface scattering. This study proposed an SSM estimation method based on polarimetric decomposition and quantile regression forests (QRF) to overcome this problem. Model-based polarimetric decomposition separates volume scattering, double-bounce scattering, and surface scattering, while eigenvalue-based polarimetric decomposition provides additional parameters to describe the scattering mechanism. The combined use of these parameters explains the polarimetric SAR scattering information from multiple perspectives, such as vegetation, surface roughness, and SSM. As different crops differ in morphology and structure, it is essential to investigate the potential of varying polarimetric parameters to estimate SSM in areas covered by different crops. QRF, a regression method applicable to high-dimensional predictor variables, is used to estimate SSM from these parameters. In addition to the SSM estimates, QRF can also provide the predicted uncertainty intervals and quantify the importance of the different parameters in the SSM estimates. The performance of QRF in SSM estimation was tested using data from the soil moisture active passive validation experiment 2012 (SMAPVEX12) and compared with copula quantile regression (CQR). The SSM estimated by the proposed method was consistent with the in situ SSM, with the root-mean-square-error ranging from 0.037 cm3/cm3 to 0.079 cm3/cm3 and correlation coefficients ranging from 0.745 to 0.905. Meanwhile, the method proposed in this study can provide both the uncertainty of SSM estimation and the importance of different polarimetric parameters.

Funder

LuTan-1 L-Band Spaceborne Bistatic SAR Data Processing 524 Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3