Integration of Photogrammetric and Spectral Techniques for Advanced Drone-Based Bathymetry Retrieval Using a Deep Learning Approach

Author:

Alevizos Evangelos,Nicodemou Vassilis C.ORCID,Makris AlexandrosORCID,Oikonomidis IasonORCID,Roussos AnastasiosORCID,Alexakis Dimitrios D.ORCID

Abstract

Shallow bathymetry mapping using proximal sensing techniques is an active field of research that offers a new perspective in studying the seafloor. Drone-based imagery with centimeter resolution allows for bathymetry retrieval in unprecedented detail in areas with adequate water transparency. The majority of studies apply either spectral or photogrammetric techniques for deriving bathymetry from remotely sensed imagery. However, spectral methods require a certain amount of ground-truth depth data for model calibration, while photogrammetric methods cannot perform on texture-less seafloor types. The presented approach takes advantage of the interrelation of the two methods, in order to predict bathymetry in a more efficient way. Thus, we combine structure-from-motion (SfM) outputs along with band-ratios of radiometrically corrected drone images within a specially designed deep convolutional neural network (CNN) that outputs a reliable and robust bathymetry estimation. To achieve effective training of our deep learning system, we utilize interpolated uncrewed surface vehicle (USV) sonar measurements. We perform several predictions at three locations in the southern Mediterranean Sea, with varying seafloor types. Our results show low root-mean-square errors over all study areas (average RMSE ≅ 0.3 m), when the method was trained and tested on the same area each time. In addition, we obtain promising cross-validation performance across different study areas (average RMSE ≅ 0.9 m), which demonstrates the potential of our proposed approach in terms of generalization capabilities on unseen data. Furthermore, areas with mixed seafloor types are suitable for building a model that can be applied in similar locations where only drone data is available.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3