Band-Optimized Bidirectional LSTM Deep Learning Model for Bathymetry Inversion

Author:

Xi Xiaotao1,Chen Ming1ORCID,Wang Yingxi1,Yang Hua1

Affiliation:

1. College of Information, Shanghai Ocean University, No. 999 Hucheng Ring Road, Shanghai 201306, China

Abstract

Shallow water bathymetry is of great significance in understanding, managing, and protecting coastal ecological environments. Many studies have shown that both empirical models and deep learning models can achieve promising results from satellite imagery bathymetry inversion. However, the spectral information available today in multispectral or/and hyperspectral satellite images has not been explored thoroughly in many models. The Band-optimized Bidirectional Long Short-Term Memory (BoBiLSTM) model proposed in this paper feeds only the optimized bands and band ratios to the deep learning model, and a series of experiments were conducted in the shallow waters of Molokai Island, Hawaii, using hyperspectral satellite imagery (PRISMA) and multispectral satellite imagery (Sentinel-2) with ICESat-2 data and multibeam scan data as training data, respectively. The experimental results of the BoBiLSTM model demonstrate its robustness over other compared models. For example, using PRISMA data as the source image, the BoBiLSTM model achieves RMSE values of 0.82 m (using ICESat-2 as the training data) and 1.43 m (using multibeam as the training data), respectively, and because of using the bidirectional strategy, the inverted bathymetry reaches as far as a depth of 25 m. More importantly, the BoBiLSTM model does not overfit the data in general, which is one of its advantages over many other deep learning models. Unlike other deep learning models, which require a large amount of training data and all available bands as the inputs, the BoBiLSTM model can perform very well using equivalently less training data and a handful of bands and band ratios. With ICESat-2 data becoming commonly available and covering many shallow water regions around the world, the proposed BoBiLSTM model holds potential for bathymetry inversion for any region around the world where satellite images and ICESat-2 data are available.

Funder

Shanghai Science and Technology Innovation Action Planning

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3