Toward Semi-Supervised Graphical Object Detection in Document Images

Author:

Kallempudi GouthamORCID,Hashmi Khurram AzeemORCID,Pagani Alain,Liwicki MarcusORCID,Stricker Didier,Afzal Muhammad ZeshanORCID

Abstract

The graphical page object detection classifies and localizes objects such as Tables and Figures in a document. As deep learning techniques for object detection become increasingly successful, many supervised deep neural network-based methods have been introduced to recognize graphical objects in documents. However, these models necessitate a substantial amount of labeled data for the training process. This paper presents an end-to-end semi-supervised framework for graphical object detection in scanned document images to address this limitation. Our method is based on a recently proposed Soft Teacher mechanism that examines the effects of small percentage-labeled data on the classification and localization of graphical objects. On both the PubLayNet and the IIIT-AR-13K datasets, the proposed approach outperforms the supervised models by a significant margin in all labeling ratios (1%, 5%, and 10%). Furthermore, the 10% PubLayNet Soft Teacher model improves the average precision of Table, Figure, and List by +5.4,+1.2, and +3.2 points, respectively, with a similar total mAP as the Faster-RCNN baseline. Moreover, our model trained on 10% of IIIT-AR-13K labeled data beats the previous fully supervised method +4.5 points.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust page object detection network for heterogeneous document images;International Journal on Document Analysis and Recognition (IJDAR);2024-08-16

2. Towards End-to-End Semi-supervised Table Detection with Semantic Aligned Matching Transformer;Lecture Notes in Computer Science;2024

3. A Hybrid Approach for Document Layout Analysis in Document Images;Lecture Notes in Computer Science;2024

4. The YOLO model that still excels in document layout analysis;Signal, Image and Video Processing;2023-11-19

5. Towards End-to-End Semi-Supervised Table Detection with Deformable Transformer;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3