Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization

Author:

Zhang MingORCID,Lu YangORCID,Hu Youxi,Amaitik NasserORCID,Xu YuchunORCID

Abstract

With the rapid development of Industrial 4.0, the modern manufacturing system has been experiencing profoundly digital transformation. The development of new technologies helps to improve the efficiency of production and the quality of products. However, for the increasingly complex production systems, operational decision making encounters more challenges in terms of having sustainable manufacturing to satisfy customers and markets’ rapidly changing demands. Nowadays, rule-based heuristic approaches are widely used for scheduling management in production systems, which, however, significantly depends on the expert domain knowledge. In this way, the efficiency of decision making could not be guaranteed nor meet the dynamic scheduling requirement in the job-shop manufacturing environment. In this study, we propose using deep reinforcement learning (DRL) methods to tackle the dynamic scheduling problem in the job-shop manufacturing system with unexpected machine failure. The proximal policy optimization (PPO) algorithm was used in the DRL framework to accelerate the learning process and improve performance. The proposed method was testified within a real-world dynamic production environment, and it performs better compared with the state-of-the-art methods.

Funder

European Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3