Trends in Digital Twin Framework Architectures for Smart Cities: A Case Study in Smart Mobility

Author:

Faliagka Evanthia1ORCID,Christopoulou Eleni12ORCID,Ringas Dimitrios12,Politi Tanya13ORCID,Kostis Nikos4,Leonardos Dimitris4,Tranoris Christos5,Antonopoulos Christos P.1ORCID,Denazis Spyros3ORCID,Voros Nikolaos1

Affiliation:

1. ECE Department, University of Peloponnese, 26334 Patras, Greece

2. Department of Informatics, Ionian University, 49132 Corfu, Greece

3. ECE Department, University of Patras, 26504 Patras, Greece

4. Yodiwo, 26441 Patras, Greece

5. P-NET New Generation Emerging Networks & Verticals, 26504 Patras, Greece

Abstract

The main aim of this paper is to present an innovative approach to addressing the challenges of smart mobility exploiting digital twins within the METACITIES initiative. We have worked on this issue due to the increasing complexity of urban transportation systems, coupled with the urgent need to improve efficiency, safety, and sustainability in cities. The work presented in this paper is part of the project METACITIES, an Excellence Hub that spans a large geographical area, that of Southeastern Europe. The approach of the Greek innovation ecosystem of METACITIES involves leveraging digital twin technology to create intelligent replicas of urban mobility environments, enabling real-time monitoring, analysis, and decision making. Through use cases such as “Smart Parking”, “Environmental Behavior Analysis on Traffic Incidents”, and “Emergency Management”, we demonstrate how digital twins can optimize traffic flow, mitigate environmental impact, and enhance emergency response; these use cases will be tested on a small scale, before deciding on implementation at a larger and more expensive scale. The final outcome is the METACITIES Architecture for smart mobility, which will be part of an Open Digital Twin Framework capable of evolving a smart city into a metacity.

Funder

European Commission

Publisher

MDPI AG

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3