Digital Twin Technology in the Gas Industry: A Comparative Simulation Study

Author:

Yun Jaeseok1,Kim Sungyeon1,Kim Jinmin2ORCID

Affiliation:

1. Program in Converging Technology Systems and Standardization, Korea University, Sejong 30019, Republic of Korea

2. Department of Standards and Intelligence, Korea University, Sejong 30019, Republic of Korea

Abstract

Continuous innovation is essential in the urban gas industry to achieve the stability of energy supply and sustainability. The continuous increase in the global demand for energy indicates that the urban gas industry plays a crucial role in terms of stability, the economy, and the environmental friendliness of the energy supply. However, price volatility, supply chain complexity, and strengthened environmental regulations are certain challenges faced by this industry. In this study, we intend to overcome these challenges by elucidating the application of digital twin technology and by improving the performance of the prediction models in the gas industry. The real-time data and simulation-based predictions of pressure fluctuations were integrated in terms of pressure control equipment. We determined the contribution of this data integration to enhancing the operational efficiency, safety, and sustainable development in the gas industry. The summary of the results highlights the superior predictive performance of the autoregressive integrated moving average (ARIMA) model. It exhibited the best performance across all evaluation indices—mean absolute percentage error (MAPE), root mean square error (RMSE), and the coefficient of determination (R2)—when compared with the raw data. Specifically, the ARIMA model demonstrated the lowest RMSE value of 0.01575, the lowest MAPE value of 0.00609, and the highest R2 value of 0.94993 among the models evaluated. This indicates that the ARIMA model outperformed the other models in accurately predicting the outcomes. These findings validate that the integration of digital twin technology and prediction models can innovatively improve the maintenance strategy, operational efficiency, and risk prediction in the gas industry. Predictive maintenance models can help prevent significant industrial risks, such as gas leak accidents. Moreover, the integration of digital twin technology and predictive maintenance models can significantly enhance the safety and sustainability in the gas industry. The proposed innovative method of implementing digital twin technology and improved prediction models lays a theoretical foundation for sustainable development that can be applied to other industries with high energy consumption.

Funder

Industrial Technology Innovation Program

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3