Comparison of Named Data Networking Mobility Methodology in a Merged Cloud Internet of Things and Artificial Intelligence Environment

Author:

Azamuddin Wan Muhd HazwanORCID,Aman Azana Hafizah MohdORCID,Hassan RosilahORCID,Mansor Norhisham

Abstract

In-network caching has evolved into a new paradigm, paving the way for the creation of Named Data Networking (NDN). Rather than simply being typical Internet technology, NDN serves a range of functions, with a focus on consumer-driven network architecture. The NDN design has been proposed as a method for replacing Internet Protocol (IP) addresses with identified content. This study adds to current research on NDN, artificial intelligence (AI), cloud computing, and the Internet of Things (IoT). The core contribution of this paper is the merging of cloud IoT (C-IoT) and NDN-AI-IoT. To be precise, this study provides possible methodological and parameter explanations of the technologies via three methods: KITE, a producer mobility support scheme (PMSS), and hybrid network mobility (hybrid NeMO). KITE uses the indirection method to transmit content using simple NDN communication; the PMSS improves producer operation by reducing handover latency; and hybrid NeMO provides a binding information table to replace the base function of forwarding information. This study also describes mathematical equations for signaling cost and handover latency. Using the network simulator ndnSIM NS-3, this study highlights producer mobility operation. Mathematical equations for each methodology are developed based on the mobility scenario to measure handover latency and signaling cost. The results show that the efficiency of signaling cost for hybrid NeMO is approximately 4% better than that of KITE and the PMSS, while the handover latency for hybrid NeMO is 46% lower than that of KITE and approximately 60% lower than that of the PMSS.

Funder

National University of Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3