Affiliation:
1. School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. School of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
Abstract
Named Data Networking (NDN) can effectively deal with the rapid development of mobile video services. For NDN, selecting a suitable forwarding interface according to the current network status can improve the efficiency of mobile video communication and can also avoid attacks to improve communication security. For this reason, we propose a stochastic adaptive forwarding strategy based on deep reinforcement learning (SAF-DRL) for secure mobile video communications in NDN. For each available forwarding interface, we introduce the twin delayed deep deterministic policy gradient algorithm to obtain a more robust forwarding strategy. Moreover, we conduct various numerical experiments to validate the performance of SAF-DRL. Compared with BR, RFA, SAF, and AFSndn forwarding strategies, the results show that SAF-DRL can reduce the delivery time and the average number of lost packets to improve the performance of NDN.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献