Topology and Emergent Symmetries in Dense Compact Star Matter

Author:

Ma Yong-Liang12,Yang Wen-Cong12

Affiliation:

1. College of Physics, Jilin University, Changchun 130012, China

2. School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

Abstract

It has been found that the topology effect and the possible emergent hidden scale and hidden local flavor symmetries at high density reveal a novel structure of compact star matter. When Nf≥2, baryons can be described by skyrmions when the number of color Nc is regarded as a large parameter and there is a robust topology change—the transition from skyrmion to half-skyrmion—in the skyrmion matter approach to dense nuclear matter. The hidden scale and local flavor symmetries, which are sources introducing the scalar meson and vector mesons, are significant elements for understanding the nuclear force in nonlinear chiral effective theories. We review in this paper how the robust conclusions from the topology approach to dense matter and emergent hidden scale and hidden local flavor symmetries figure in generalized nuclear effective field theory (GnEFT), which is applicable to nuclear matter from low density to compact star density. The topology change encoded in the parameters of the effective field theory is interpreted as the hadron-quark continuity in the sense of the Cheshire Cat Principle. A novel feature predicted in this theory that has not been found before is the precocious appearance of the conformal sound velocity in the cores of massive stars, although the trace of the energy-momentum tensor of the system is not zero. That is, there is a pseudoconformal structure in the compact star matter and, in contrast to the usual picture, the matter is made of colorless quasiparticles of fractional baryon charges. A possible resolution of the longstanding gA quench problem in nuclei transition and the compatibility of the predictions of the GnEFT with the global properties of neutron star and the data from gravitational wave detections are also discussed.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3